Department of Computer Science \& Engineering Indian Institute of Technology Kharagpur

Class Test - 1
 Soft Computing Applications: CS60108

Spring Semester-2024
Full Marks: 50
Time:
1 hour
Answer all questions

Problem 1.

1. A membership function of a fuzzy set A is defined as follows

$$
\mu_{A}(x)=\frac{1}{1+\frac{(x-a)^{2}}{2 k^{2}}}
$$

Where a and k are any two constant values.

Calculate the following.
a) Height
b) Support
c) Crossover point
d) Bandwidth
e) Decide whether A is open or closed.

Solution:
To calculate the height, support, crossover point, bandwidth, and decide whether the fuzzy set A is open or closed, let's break down the given membership function:

$$
\mu_{A(x)}=\frac{1}{1+\frac{(x-a)^{2}}{2 k^{2}}}
$$

Height (Maximum Membership Value): The maximum membership value occurs when x is equal to a. Therefore, the height of the membership function is $\mu_{A(a)}=\frac{1}{1+0}=1$.

Support (Range of \mathbf{x} for which $\mu_{A(x)}>0$): Since the denominator of the function is always positive, the support extends to all real numbers. Therefore, the support is ($-\infty$, $+\infty)$.

Crossover Point (Point where $\mu_{A(x)}=0.5$): Let's solve the equation $\mu_{A(x)}=0.5$ for x :
$0.5=\frac{1}{1+\frac{(x-a)^{2}}{2 k^{2}}}$

Or, $1+\frac{(x-a)^{2}}{2 k^{2}}=2$

Or, $\frac{(x-a)^{2}}{2 k^{2}}=1$
Or, $(x-a)^{2}=2 k^{2}$
$(x-a)= \pm \sqrt{2 k^{2}}$

$$
x=a \pm \sqrt{2} k
$$

So, the crossover points are $x=a+\sqrt{2} k$ and $x=a-\sqrt{2} k$

Bandwidth: The distance between two distinct cross over points.

$$
(a+\sqrt{2} k)-(a-\sqrt{2} k)=2 \sqrt{2} k
$$

Open or Closed: A fuzzy set is closed if its membership function achieves its maximum value at a single point, and open if its maximum value is spread over an interval. In this case, since the maximum membership value occurs at a single point (a), the set A is closed.

To summarize:
Height: 1
Support: $(-\infty,+\infty)$
Crossover Points: $=a+\sqrt{2} k$ and $x=a-\sqrt{2} k$
Bandwidth: $2 \sqrt{2} k$
Closed set

Problem 2.

Consider a universe of discourse [0 ... 100] in a continuous domain.

Three fuzzy sets are defined over the above universe of discourse:
A: Score is Poor
B: Score is Average
C: Score is Good

The membership function of the three fuzzy sets are shown graphically below.

(a) Express the μ-functions for $\mu_{\mathrm{A}(\mathrm{X})}, \mu_{\mathrm{B}(\mathrm{X})}$ and $\mu_{\mathrm{C}(\mathrm{X})}$ mathematically.
(b) Find the defuzzified value of the fuzzy set B using COG method

Solution:

(a)
$\mu_{A(x)}=\left\{\begin{array}{cc}\frac{1}{40-x} & \text { if } x \leq 10 \\ \frac{40-10}{40-10} 10 \leq x \leq 40 \\ 0 & \text { if } x \geq 40\end{array}\right\}$
$\mu_{B(x)}=\left\{\begin{array}{cl}0 & \text { if } x \leq 30 \\ \frac{x-30}{50-30} & \text { if } 30 \leq x \leq 50 \\ \frac{1}{70-x} & \text { if } 50 \leq x \leq 60 \\ \frac{\text { if } 60 \leq x \leq 70}{70-60} & \text { if } x \geq 70\end{array}\right\}$
$\mu_{C(x)}=\left\{\begin{array}{cc}\begin{array}{c}0 \\ \text { if } x \leq 60 \\ \frac{x-60}{90-60}\end{array} \text { if } 60 \leq x \leq 90 \\ 1 & \text { if } x \geq 90\end{array}\right\}$
(b)

The defuzzified value of set B , with COG method is:

$$
\begin{aligned}
z^{*} & =\frac{\int \mu_{B(z)} z d z}{\int \mu_{B(z)} d z} \\
z^{*} & =\frac{\int_{30}^{50} \frac{(z-30)}{20} z d z+\int_{50}^{60} 1 . z d z+\int_{60}^{70} \frac{(70-z)}{10} z d z}{\int_{30}^{50} \frac{(z-30)}{20} d z+\int_{50}^{60} 1 . d z+\int_{60}^{70} \frac{(70-z)}{10} d z} \\
& =\frac{\mathbf{1 3 0 0}}{\mathbf{2 5}}=\mathbf{5 2}
\end{aligned}
$$

Problem 3.

Following are the three fuzzy sets known.
Score is high: $\{(50,0.3),(60,0.4),(70,0.5),(80,0.8),(90,0.9),(100,1.0)\}$
IQ is high: $\{(2,0.1),(3,0.2),(4,0.6),(5,0.8),(6,0.9)\}$
IQ is low: $\{(1,0.9),(2,0.8),(3,0.7),(4,0.2),(5,0.1),(6,0)\}$
Given the above fuzzy set, how you can deduce Score is Low.
Assume that there is a rule that if score is High Then IQ is High.

$$
[5+10=15]
$$

Solution:

Assume, x is score and y is IQ. Also, A and B implies x and y are high, respectively.
$A=\{(50,0.3),(60,0.4),(70,0.5),(80,0.8),(90,0.9),(100,1)\}$
$B=\{(1,0),(2,0.1),(3,0.2),(4,0.6),(5,0.8),(6,0.9)\}$
$\underline{B}=\{(1,0.9),(2,0.8),(3,0.7),(4,0.2),(5,0.1),(6,0)\}$
if score is High Then IQ is High $=A \rightarrow B=(\mathrm{A} \times \mathrm{B}) \cup \underline{A} \times Y$:
$A \times B$:

0	0.1	0.2	0.3	0.3	0.3
0	0.1	0.2	0.4	0.4	0.4
0	0.1	0.2	0.5	0.5	0.5
0	0.1	0.2	0.6	0.8	0.8
0	0.1	0.2	0.6	0.8	0.9
0	0.1	0.2	0.6	0.8	0.9

$\underline{A} \times Y:$

0.7	0.7	0.7	0.7	0.7	0.7
0.6	0.6	0.6	0.6	0.6	0.6
0.5	0.5	0.5	0.5	0.5	0.5
0.2	0.2	0.2	0.2	0.2	0.2
0.1	0.1	0.1	0.1	0.1	0.1
0	0	0	0	0	0

$R(x, y)$:

0.7	0.7	0.7	0.7	0.7	0.7
0.6	0.6	0.6	0.6	0.6	0.6
0.5	0.5	0.5	0.5	0.5	0.5
0.2	0.2	0.2	0.6	0.8	0.8
0.1	0.1	0.2	0.6	0.8	0.9
0	0.1	0.2	0.6	0.8	0.9

$$
\begin{aligned}
& \underline{B}=\left[\begin{array}{llllll}
0.9 & 0.8 & 0.7 & 0.2 & 0.1 & 0
\end{array}\right] \\
& \underline{B} \circ R(x, y):\left[\begin{array}{llllll}
0.7 & 0.6 & 0.5 & 0.2 & 0.2 & 0.2
\end{array}\right] \\
& \underline{A}=\{(50,0.7),(60,0.7),(70,0.7),(80,0.7),(90,0.7),(100,0.7)\}
\end{aligned}
$$

Problem 4.

Bipolar sigmoid transfer function for a given value of α is given below

$$
\Phi(I)=\frac{e^{-\alpha I}-e^{+\alpha I}}{e^{-\alpha I}+e^{+\alpha I}}
$$

(a) Find the limiting value of $\Phi(I)$
(b) Draw the function graphically and show how it looks for different values of α.
(c) Prove that

$$
\begin{equation*}
\frac{\partial \Phi(I)}{\partial I}=\alpha(1-\Phi(I))(1+\Phi(I)) \tag{5+5+5=15}
\end{equation*}
$$

Solution:

4 (a).
$\phi(I)=\frac{e^{-\alpha I}-e^{\alpha I}}{e^{-\alpha I}+e^{\alpha I}}$

- $\lim _{I \rightarrow \infty} \frac{e^{-\alpha I}-e^{\alpha I}}{e^{-\alpha I}+e^{\alpha I}}=\lim _{I \rightarrow \infty} \frac{1-\frac{e^{\alpha I}}{e^{-\alpha I}}}{1+\frac{e^{\alpha I}}{e^{-\alpha I}}}$

$$
=\lim _{I \rightarrow \infty} \frac{1-e^{2 \alpha I}}{1+e^{2 \alpha I}}
$$

Using L'Hopital rule:
$\lim _{I \rightarrow \infty} \frac{1-e^{2 \alpha I}}{1+e^{2 \alpha I}}=\lim _{I \rightarrow \infty} \frac{0-2 e^{2 \alpha I} \cdot I}{0+2 e^{2 \alpha I} \cdot I}=-1$

- $\lim _{I \rightarrow-\infty} \frac{e^{-\alpha I}-e^{\alpha I}}{e^{-\alpha I}+e^{\alpha I}}=\lim _{I \rightarrow-\infty} \frac{1-\frac{e^{\alpha I}}{e^{-\alpha I}}}{1+\frac{e^{\alpha I}}{e^{-\alpha I}}}$

$$
=\lim _{I \rightarrow-\infty} \frac{1-e^{2 \alpha I}}{I+e^{2 \alpha I}}=\frac{1-0}{1+0}=1
$$

Therefore, the range is $[-1,1]$

4 (b).

Case $\alpha<0$

Case $\alpha>0$

Case $\alpha=0$
4 (c)

To probe $\frac{\partial \Phi(I)}{\partial I}=\alpha(1-\Phi(I))(1+\Phi(I))$

$$
\begin{aligned}
& \text { - } \frac{\partial \phi(I)}{\partial I}=\frac{\partial}{\partial I}\left[\frac{e^{-\alpha I}-e^{\alpha I}}{e^{-\alpha I}+e^{\alpha I}}\right] \\
& =\frac{\left(-\alpha e^{-\alpha I}-\alpha e^{\alpha I}\right)\left(e^{-\alpha I}+e^{\alpha I}\right)-\left(e^{-\alpha I}-e^{\alpha I}\right)\left(\alpha e^{-\alpha I}+\alpha e^{\alpha I}\right)}{\left(e^{-\alpha I}+e^{\alpha I}\right)^{2}} \\
& =\frac{(-\alpha)\left(e^{-\alpha I}+e^{\alpha I}\right)^{2}-(-\alpha)\left(e^{-\alpha I}-\alpha e^{\alpha I}\right)^{2}}{\left(e^{-\alpha I}+e^{\alpha I}\right)^{2}} \\
& =(-\alpha)\left[\frac{\left(e^{-\alpha I}+e^{\alpha I}\right)^{2}-\left(e^{-\alpha I}-e^{\alpha I}\right)^{2}}{\left(e^{-\alpha I}+e^{\alpha I}\right)^{2}}\right] \\
& =(-\alpha)\left[\frac{\left(e^{-\alpha I}+e^{\alpha I}\right)^{2}}{\left(e^{-\alpha I}+e^{\alpha I}\right)^{2}}-\frac{\left(e^{-\alpha I}-e^{\alpha I}\right)^{2}}{\left(e^{-\alpha I}+e^{\alpha I}\right)^{2}}\right] \\
& =(-\alpha)\left[1-(\phi(I))^{2}\right] \\
& =(-\alpha)[(1+\phi(I))(1-\phi(I))]
\end{aligned}
$$

